Uptake and Diagnostic Yield of Chromosomal Microarray in an Australian Child Development Clinic

نویسندگان

  • Dylan Mordaunt
  • Michael Gabbett
  • Melanie Waugh
  • Karen O’Brien
  • Helen Heussler
چکیده

Autism is an etiologically heterogeneous developmental disorder for which the range of genetic investigations has expanded considerably over the past decade. Introduction of chromosomal microarray (CMA) to clinical practice has expanded the range of conditions which pediatricians are able to detect. This study reviewed the utilization, yield and cost of genetic investigations in a sample of children with pervasive developmental disorders (PDD) in an Australian metropolitan child development service. Six hundred and ninety eight patients with PDD were identified from the clinic population. One hundred and ten (15.7%) of the clinic population had undergone investigation with chromosomal microarray, 140 (20.0%) with karyotype (KT), and 167 (23.9%) with Fragile X testing (FRGX). Twelve (10.9%) CMA findings were reported, of which seven (6.3%) were felt to be the likely cause of the child's clinical features. Five (3.5%) KT findings were reported, of which four (2.9%) were felt to be the likely cause of the child's clinical features. Two patients (1.2%) were identified with Fragile X expansions. One fifth of the clinic's recent PDD population had undergone testing with CMA. CMA appears to have increased the diagnostic yield of the genetic investigation of autism, in line with internationally reported levels. Number needed to test (NNT) and cost per incremental diagnosis, were also in line with internationally reported levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal microarray in clinical diagnosis: a study of 337 patients with congenital anomalies and developmental delays or intellectual disability

AIM To determine the diagnostic yield and criteria that could help to classify and interpret the copy number variations (CNVs) detected by chromosomal microarray (CMA) technique in patients with congenital and developmental abnormalities including dysmorphia, developmental delay (DD) or intellectual disability (ID), autism spectrum disorders (ASD) and congenital anomalies (CA). METHOD CMA ana...

متن کامل

Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.

Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISC...

متن کامل

Chromosomal microarray versus karyotyping for prenatal diagnosis.

BACKGROUND Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. METHODS Samples from women undergoing prenatal diagnosis at 29 c...

متن کامل

Chromosomal Microarray Testing in 42 Korean Patients with Unexplained Developmental Delay, Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies

Chromosomal microarray (CMA) is a high-resolution, high-throughput method of identifying submicroscopic genomic copy number variations (CNVs). CMA has been established as the first-line diagnostic test for individuals with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCAs). CMA analysis was performed in 42 Korean pa...

متن کامل

I-38: Chromosome Instability in The Cleavage Stage Embryo

Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014